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Abstract— Business demands for better computing power 
because the cost of hardware is declining day by day. 
Therefore, existing sequential software are either required to 
convert to a parallel equivalent and should be optimized, or a 
new software base must be written. However analyzing and 
detection of healthy code snippet manually is a tedious task. 
Loops are most important and attractive for parallelization as 
generally they consume more execution time as well as 
memory. The purpose of this paper is to review existing loop 
dependence analysis techniques for auto-parallelization. We 
present some technical background of data dependency 
analysis, followed by a review of loop dependence analysis. 
The review material focuses explicitly on dependence analysis 
techniques, dependence tests and their drawbacks. We 
conclude by discussing the nature of the review material and 
considering some possibility for future. 

 
Keywords— Compiler, Parallelization, parallel computing, 
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I. INTRODUCTION 

Many of the industries had followed traditional 
sequential programming before. Algorithms are constructed 
and implemented considering sequential call flow; hence 
only one instruction may execute at a time [1-4]. Parallel 
programming seems to be the most logical way to meet the 
current business demand. Therefore, existing traditional 
sequential software are either required to convert to a 
parallel equivalent and should be optimized, or a new 
software base must be written. However, both options 
require a skilled developer in dependence analysis. 
Converting these software’s in multithreaded for parallel 
computation increases the complexity and cost involved in 
software development due to rewriting legacy code, efforts 
to avoid race conditions, deadlocks and other problems 
associated with parallel programming. 

Some parallel languages such as SISAL [5] and PCN [6] 
have found little favour with application programmers; 
however industries prefer to use their traditional sequential 
programs rather than learning a completely new language 
only for parallel programming. In view of this, auto-
parallelization could be the best option to convert existing 
traditional sequential software instead of doing it manually. 

Many researchers have worked on the development of 
automatic parallelization from different points of views. 
There are several well-known research groups involved in 
the development and improvement of parallel compilers, 
such as Polaries, PFA, Parafrase, SUIF etc [4,7]. Most 
research compilers consider FORTRAN programs only for 
automatic parallelization. FORTRAN programs are simpler 
to analyse as compared to C/C++ programs. Typical 

examples are: Vienna FORTRAN, Paradigm, Polaris, SUIF 
compilers. Compiler should be able to reorder the 
sequential statements for parallelism exploitation. The 
challenge for such a reorder is ensuring the changed order 
always computes the same result for all possible inputs.  

In particular, loops are a rich source of parallelism and 
can be used to achieve considerable improvement in 
efficiency on multiprocessors Therefore; we have reviewed 
the existing data dependence tests and algorithm for loops 
dependency. The review was conducted in order to locate 
the available literature in this field and to isolate potential 
research areas. The elements of data dependence 
computation that we consider are limited explicitly to 
methodologies, algorithms defined in different research 
papers.  

II. DEPENDENCE ANALYSIS 

The sequential language introduced few constrains 
which are not critical for preserving the computation. 
Finding such set of constrains is key for transforming 
programs to parallel one. Characterizing these constrains 
allow the PC to reorder execution of a program without 
changing its constraint. These constraints are called as 
dependency.A set of dependency is sufficient to ensure that 
program transformations do not change the meaning of 
actualprogram. The same results are achieved by preserving 
the relative order of the writes to each of the memory 
location in the program. 

Compilers will have the ability to analyze the tasks that 
can be safely and efficiently executed in parallel. The code 
can be executed parallel in case there is no dependency in 
between execution path. Dependence is a relation in 
between the statements of program.  Statement S2 is said to 
be dependent on S1 (S1 δ S2); if S1 must be executed 
before S2 to produce correct output. Dependence analysis 
[8,9] distinguishes between two kinds of dependence: data 
dependence and control dependence. 
A. Data dependency: 

Two statements are called data dependent whenever 
the variables used by one statement may have incorrect 
values if the statements executes in reverse order. For 
example; statement S2 has data dependence on statement 
S1 in following segment because of AREA 

S1: AREA=PI*R*2 
S2: VOLUME=AREA *H 

B. Control dependency: 
 Execution of one statement depends on result of 
other condition.  Relations of control dependencies 
describe the control structure of a program [10, 11]. For 
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example:  the execution of S2 is depending on the result 
of statement S1.  

 
S1: If(A!=0) { 
S2:    B=B/A; 
S3: } 
 

Both data as well as control dependency should be taken 
care by compiler while parallelizing any program. Data 
decomposition, where parallel tasks perform similar 
operations on different elements of the data array could be 
highly effective technique for parallelizing program. The 
dependence can be classified [12] into: 

 
1) True dependence: S1 writes and then S2 reads from 

same memory location (RAW) denoted as S1 δ S2 
2) Anti-dependence: S1 reads and then S2 writes at 

same memory location (WAR) denoted as S1 δ
- S2 

3) Output dependence: Both S1 and S2 write at same 
memory location (WAW) denoted as S1 δo S2 

4) Input dependence: S1 reads memory andS2 later 
reads (RAR) the same which is denoted as S1 δi S2 

Consider below statements which have execution path 
in sequential order as a dependence classification 
example. 

 
S1: a=b; 
S2: b=c+d; 
S3: e=a+d; 
S4: b=f*4; 
 

The variable of each statement “variable = expression” 
holds the result of the statement and hence it acts as its 
output, while the variables in the expression are the input 
of the statement. 

 

 
Fig 1 Shows the dependency between S1, S2, S3 and S4. 

 
In Figure 1, the output variable of S2 (b) is being used 

by statement S1 as an input variable; hence S2 is anti-
dependent on S1 (i.e. S1 δ

- S2).  The variable (b) is 
utilized in S2 and S4 statements. Value of (b) will be f*4 

after execution of S4 in sequential execution. The value 
of (b) is determined by the execution order of  S2and S4: 
if S4 is executed before S2, the final value of (b) will 
change, hence S4 is said to be output dependent on S2 

(i.e. S1 δo S2). S2 and S3 are reading same variable (d); 
hence S3 is said to be input dependent on S2. (i.e. S2δi 
S3) Output variable (a) of S1 is being used in statement 
S3 as an input; hence S3 is true dependent on S1 (i.e. S1 
δ S3) 

III. LOOP DEPENDENCE 

Loops execute statements multiple times in a regular 
computation and it often contains array variable. Loops 
are very attractive for parallelization as generally they 
consume more execution time as well as memory. 
Detecting such loop dependencies and applying automatic 
transformation is a complex task. To achieve this, we 
need a powerful mathematical model which helps the 
compilers to detect dependencies and transform the input 
in parallel form. 

The next section lists some of the terms which form 
mathematical base for dependency analysis. 
1) Iteration vector:  It represents a particular 
execution of statements by setting an entry of a vector to 
the value of the corresponding loop induction variable. 
2) Iteration space:  It is a set of all possible 
iteration vectors for a statement. 
3) Distance vector: It indicates the distance 
between iterations, denoted by σ 
4)  Direction vector: It indicates the corresponding 
direction, basically the sign of the distance, denoted as ρ 

The best way to build an understanding for these 
mathematical terminologies is to start with a simple 
example. Consider the following loop: 

for (i=1;i<=3;i++) { 
for (j=1;j<=3;j++) { 

S  A(i,j)=A(j,i); 
} 
} 

Iteration space [13] for above loop is  {(1,1), (2,1), 
(2,2),(3,1), (3,2), (3,3) }.  Iteration number can be 
calculated by using below formula: 
 i = (I– L+1)/S,      i= iteration number 
   I = value of index on that 
iteration 
    L= Lower bound 
    S= steps. 

The lexicographic order of two iteration vectors can be 
succinctly summarized using distance vector and direction 
vectors [14]. 

Distance vectors [14] were first used by Kuck and 
Muaoka in [12, 15]. It describes dependences in between 
iterations.  They are very crucial to determine whether loop 
can be executed in parallel or not. If two iteration vectors i 
(is the source of dependence) and iteration vector j (is the 
sink of the dependence) represents of dependent statements 
(S1 δ S2) in nested loop; then the distance vector (i,j) is 
defined as vector of length such that: 
d(i,j)k= jk - ik 

Output

S1 

anti 

True 

anti 

Input 

 b=c+d

a=b

e=a+d

 b=f*4

 

S2 

S3 

S4 
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Direction vectors were first introduced by Wolfe[16].  
It is closely related to distance vector and are useful for 
calculating the level of loop carried dependences [17, 18]. 
They are mapped into direction vectors such that: 

 
“<” if d(i,j)k> 0 

D(i,j)k = “=” if d(i,j)k = 0 
“>” if d(i,j)k< 0 where d(i,j)k = jk - ik 

 
Direction vector whose leftmost non “=” component is 

not “<”; it means dependence doesn’t exist. It indirectly 
express that the sink of the dependence occurs before the 
source. In some cases a direction vector or distance vector 
alone may be insufficient to completely describe 
dependence and so both distance and direction vector may 
be required. Consider the following example: 

 
for (i=1;i<=4;i++) { 
    for (j=1;j<=i;j++) { 

S       A(I+1,J) = ... 
  ... =  A(I,J) 

     } 
} 
 

Find the details of iteration vectors and their 
dependence relations for above example in TABLEI and 
TABLE III below: 

 
TABLE III 

Iteration Vector (I,J) S1 S2 

(1,1) A(2,1) A(1,1) 

(2,1) A(3,1) A(2,1) 

(2,2) A(3,2) A(2,2) 

(3,1) A(4,1) A(3,1) 

(3,2) A(4,2) A(3,2) 

(3,3) A(4,3) A(3,3) 

(4,1) A(5,2) A(4,1) 

(4,2) A(5,1) A(4,2) 

(4,3) A(5,2) A(4,3) 

(4,4) A(5,4) A(4,4) 

 
 

TABLEII 

S1δ S2 Array Element 

S1(1,1)  δ  S2(2,1) A(2,1) 

S1(2,1)  δ  S2(3,1) A(3,1) 

S1(2,2)  δ  S2(3,2) A(3,2) 

S1(3,1)  δ  S2(4,1) A(4,1) 

S1(3,2)  δ  S2(4,2) A(4,2) 

S1(3,3)  δ  S2(4,3) A(4,3) 

Arrays from TABLEIV are dependent on each other. 
Dependence vector for above example is (1, 0) and 
direction vector is (<, =). 

Loop dependence can be further classified as either 
loop-independent or loop-carried, depending on whether it 
exists independently of any loop inside of which it is nested. 
Loop-independent flow dependence does not inhibit any 
parallelization of the outer loops because it will still be 
satisfied. Loop-carried dependences may inhibit 
parallelization because the simultaneous execution of 
different iterations may leave them unsatisfied. 

 
1) Loop Carried dependence: 

Loop carried dependence is a dependence that arises 
because of the iteration of loops. Statement S2 has a loop-
carried dependence on statement S1iff S1 and S2 has 
execution path and they refer to memory location M on 
their respective iteration i and j, where i>j. Consider 
below C code snippet for details: 

for (i=2;i<=4;i++){ 
S1:    a(i+1)= ... 
S2:     ...=a(i) 

 } 
If statement S2 appears before S1 within same loop or 

both S1 and S2 are same statements; then that loop-carried 
dependence is called as backward. If S2 appears after S1 

within loop then that loop carried dependence is called as 
forward. 

 “Level” of dependence is an important factor of loop 
carried dependence. Dependence level conveniently 
summarizes dependences and is useful for reorder 
transformation. Reorder transformation just changes the 
execution order of execution code, without any change in 
actual statements. It doesn’t eliminate dependences, 
however, it can change the ordering of the dependence e.g. 
change from true to anti-dependence or vice versa  

 

 
 

Fig 2- Shows the relations between S1 and S2 for each iteration and their dependences. S1 is the source and S2 is the sink of the 
dependence. S1 and S2 always execute in different iteration and they always have negative dependence vector i.e. (“<.”). 

a(4a(5) a(3) a(4) a(2) a(3) 

i=2 
S1[2]      S2[2] 

i=3 
S1[3]      S2[3] 

i=4 
S1[4]      S2[4] 
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level of a loop-carried = index of the leftmost non “=” of 
D(i,j). 
The level of dependences in, 

for(i=1;i<10;i++) { 
      for(j=1;j<10;j++) { 

for(k=1;k<10;k++) { 
 S1    A(i,j+1,k) = A(j,j,k) 

} 
    } 
} 

 
is 2 because D(i, j) is (=,<,=)for every i, j that creates a 
dependence. 
 
2) Loop independent dependence: 

It arises as a result of relative statement position. 
Thus, loop-independent dependences determine the order 
in which code is executed within a nest of loops. 
Statement S2 has a loop-independent dependence on 
statement S1 if and only if S1 and S2 has execution path 
within iteration and they refers memory location M on 
their respective iteration i and j where i=j. Dependence 
vector is always 0 for loop-independent dependence. 
Consider below C code snippet for details: 
 

for(i=2;i<=4;i++){ 
S1:   a(i)=... 
S2:      ... =a(i) 

} 

IV. DEPENDENCE TESTING 

Dependence testing is the method used to determine 
whether dependences exist between two subscripted 
references to the same array in a loop nest [19]. Loops are 
main source of the parallelism in any program and precise 
data dependence information is necessary to detect 
parallelism.  Dependence testing is done in pairs to discover 
data dependences between iteration of nested loops. 
Dependence exists if any two iterations of the loop access 
same array with same subscript (i.e. the same memory 
location). First step of dependence testing is to partition 
subscripts according to their complexity, and test 
accordingly. 
 
1) Partition Based Algorithm 

a. Partition the subscript S into m separable and 
minimal coupled groups  S1, S2, ...Sm for a single 
reference pair enclosed in n loops with indexes I1, I2, ... 
In. 

b. Label each subscript as ZIV, SIV or MIV 
c. For each separable subscript, apply the appropriate 
single subscript test (ZIV, SIV, MIV) based on the 
complexity of the subscript. If independence is proved, 
no further testing is needed else it will produce 
direction vectors for the indexes occurring in that 
subscript. 

d. For each coupled group, apply a multiple subscript test to 
produce a set of direction vectors for the indices 
occurring within that group 

i) If any test yields independence, no dependences 
exist. 

ii) Otherwise merge all the direction vectors 
computed in the previous steps into a single set of 
direction vectors for two references. 

iii) This algorithm is implemented in both 
PFC, an automatic vectorizing and parallelising compiler, 
as well as ParaScope, a parallel computing environment 
[20,21,22]. 

 
2) Merging Direction Vector: 

The merge operation is simply a Cartesian product of 
direction/distance vectors produced by individual tests. Let 
us see in the below example: 

for (i=0; i<N; i++) { 
   for (j=0; j<N; j++) { 

 S1   A (i+1, 4) = ... 
 S2   ... = A (i, N); 

    } 
} 

The first partition subscript (i+1, i) yields the direction 
vector (<) for the loop with index i. second partition 
subscript (4, N) doesn’t have j index and N doesn’t 
indirectly vary with j and hence the full set of direction 
vectors (*) [8] needs to be assumed. The direction vector 
for i and j yields the set of direction vectors {(<, <), (<, =), 
(<, >)}, or {(<, *)}. If one of the dependence test proves to 
be independence; merge is not necessary, since overall 
result is independence. 

V. DATA DEPENDENCE TESTS 

Once subscript partition is done; specific tests can be 
applied to determine whether dependence exists or not. 
Most of the dependence tests are assumed that there is data 
dependence exist in program if independence can’t be 
proved. In this way, produced parallel code can’t guarantee 
about safe parallelization. 

 

 

 
Fig 3- Shows the relation between source and sink for each iteration. S1 is the source of the dependence; S2 is the sink. S2 is always 
dependent on S1 in the same iteration. The number of iterations between source and sink is 0. 

a(4) a(4) a(3) a(3) a(2) a(2) 

i=2 
S1[2]      S2[2] 

i=3 
S1[3]      S2[3] 

i=4 
S1[4]      S2[4] 
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These dependence tests are classified on the subscript basis. 
I) Single-subscript dependence tests:  

Simplest test cases are available; that can be applied on 
single subscripts. Some of them are discussed in below 
section: 
1) ZIV test:  

ZIV (zero index variable) subscript does not vary 
within any loop and hence if two expressions are not equal 
then the corresponding array references are independent. If 
independence cannot be proven, the subscript does not 
produce any direction vectors, and may be ignored. For 
example: 

for (j=1; j<10; j++) { 
S  A[a1] = A[a2] + B[j] 

} 
a1, a2 are constants or loop invariant symbols. If (a1-a2)! =0, 
it means Dependence doesn’t exists 
2) Strong SIV Test: 

Subscript for an index i is said to be strong if it has the 
form <ai + c1, ai' + c2>. Since the loop coefficients are 
identical for each reference, a strong SIV pair maps into a 
pair of parallel lines. Access to common elements will 
always be separated by the same distance in terms of loop 
iterations. This dependence distancecan be calculated by the 
following: 

d= i'-i= (c1-c2)/a 
Dependence exist if d is an integer and |d|<= U-L 
Let us understand  below example: 

for (i = 1;i<N;i++){ 
S1   A[i+2*N] = A[i+N] + C 

} 
The dependence distance d as (2N-N)/1 which 

simplifies to N and U-L equal to (N-1). Here N> N-1 and 
hence |d| > U-L. This proves there is no dependence. 
 
3) Weak-zero and weak-crossing SIV Tests: 

Subscript for an index i is said to be weak if it has the 
form <a1i + c1, a2i' + c2>. It always has different coefficient 
where the dependence equation is a1i + c1= a2i' + c2.  If one 
of the coefficient is 0 (i.e. a1=0 or a2=0), the subscript is a 
weak-zero SIV subscript. If a2=0; then dependence equation 
reduces to i= (c2 - c1)/ a1.  In this case, the dependence is 
usually caused by first or last iteration that may be 
eliminated by loop peeling [23 - 26]. If one coefficient has 
exact negative value of other (i.e. a1= -a2), then the 
subscript is weak-crossing SIV test and dependence 
equation will be i= (c2 - c1)/ 2a1. This dependence may be 
eliminated by the loop splitting transformation [23 - 26]. 

II) Multiple Induction Variable Tests: 
SIV subscripts are relatively simple linear mapping from 

the Z(the set of natural numbers) to Z in single loop; 
however MIV subscripts are much complicated as we have 
to do mapping from Zm to Z, where m is the number of 
loop induction variables appears in the subscripts. This 
added complexity requires sophisticated mathematics in 
order to accurately determine dependences.  The test for 
MIV subscripts are 
1) Delta Test 

The “Delta test” [27,28] derives from the informal usage 
of ΔI to represent the distance between source and sink 

index of I-loop. The main idea behind this test is constraints 
derived from SIV subscripts may be efficiently propagated 
into other subscripts in the same coupled group without 
losing any precision. 

The delta test can find independence if any of its ZIV or 
SIV tests determine independence. If no independence is 
found using the ZIV and SIV tests then the delta algorithm 
converts all SIV subscripts into constraints, and propagated 
into MIV subscripts. If the propagation process results with 
new SIV subscripts, then the conversion is repeated until no 
new SIV subscripts are produced.  

Next, MIV subscripts are scanned for RDIV (Restricted 
Double Index Variable) subscripts. RDIV subscripts have 
form {aj*ij + cj, ak*ik + ck}, and are similar to SIV 
subscripts, except that ij and ik are distinct indices. Testing 
the RDIV subscripts produces new constraints, which are 
then propagated into remaining MIV subscripts. 

At the end, remaining MIV subscripts are tested 
subscript-by-subscript, possibly resulting in false 
dependences. Described procedures are performed by the 
Delta test algorithm [18] 
2) Symbolic Test: 

This test is important to deal with symbolic quantities 
for resolving data flow dependencies, which appear 
frequently in subscripts. The difference between loop-
invariant symbolic additive constant (c2-c1) can be 
symbolically formed and simplified. The result of this 
simplification can then be used like a constant in order to 
break possible dependencies. This test can be applied on the 
following pair of loops which are dealing with two array 
references. 

for (i = 1;i<N1;i++){ 
S1   A(a1 *i+ c1) = …… 

} 
 
for (j = 1;j<N2;j++){ 

S2   …… = A(a2 *j+ c2) 
} 

Based on above pair of loop, dependence exists if the 
following dependence equation is satisfied for some value 
of i (1 <= i<=N1) and j (1 <= j <=N2). (Assuming a1 is 
greater than or equal to zero). 
a1 *i - a2 *j = c2 - c1 

Below two possible cases can be considered in this test: 
a) a1 and a2 may have same signs. 
As a1 and a2 are non-negative, (a1*i – a2*j) assumes its 

maximum value for i= N1 and j=1 and minimum value for 
i=1 and j= N1; so the dependence exist iff: 

a1 - a2N2 <= c2 - c1    <= a1N1 - a2 
b) a1 and a2 may have different signs. 
As a2 is negative (remember we are assuming a1 is 

greater or equal to 0), (a1*i – a2*j) assumes its maximum 
value for i= N1 and j= N2 and minimum value for i=1 and j= 
1; so the dependence existsiff: 

a1 - a2<= c2 - c1    <= a1N1 - a2N2 

 

3) The Banerjee -GCD Test: 
The Banerjee test [29] is based on intermediate value of 

theorem [30, 31], states that the function takes all 
intermediate values between a minimum and a maximum if 
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they are identified by the function. For example – if 
equation (a0 + a1 *X = b0 + b1*X’) for some integer X and 
X’; then (a1 *X - b1*X’) = b0 - a0.  In this case (b0 - a0) 
should be between upper bound (i.e a1 *max(X) - b1* 
min(X’)) and lower bound (i.e. a1 *min(X) - b1* max(X’)) 
of given equation. 

The Banerjee test requires the loops with constant 
bounds and also considers if statement conditions and does 
not analyse non-linear expressions. This test case assumes 
that all indices are independent; therefore if test fails to 
prove the same then this test does not guarantee that 
dependence really exists. In this extreme case GCD test can 
be applied.  

The GCD (greatest common divisor) test [32] is based 
upon a theorem of elementary number theory, which states 
that a linear equation (a1x1 +a2x2 + ... + anxn=  a0) has an 
integer solution iff the gcd of the coefficients on the left-
hand side of the equation (a1,a2,… an)  divides the right 
hand side constant(a0) [33].  For example – linear equation 
(3x + 5y = 20), the gcd of the coefficients on the left-hand 
side of the equation (i.e. gcd(3,5)) =1 divides right hand 
side constant (20), it means the given linear equation may 
have integer solution.  

Besides ignoring loop bound, the GCD test also doesn’t 
provide distance and direction information. Also GCD is 
often 1, which ends up being very conservative. 

 
4) The I-Test 

The I-Test [34, 35], is an enhancement of Banerjee and 
GCD test which extends the range of applicability as well 
as the accuracy. The I-Test is based on the observation that 
most of the real solution is predicted by Banerjee test. It 
leads the development of set of conditions, which 
determines the integer value between minimum and 
maximum values for liner expression by using Banerjee test. 
These accuracy conditions [36] states the relationship 
between the coefficients of loop index variables and the 
range of values they realize, in order to guarantee that every 
integer value between the extreme values is achievable.The 
I-Test is based on the notion of the integer interval equation: 

 
a1 *X1 + a2 *X2 + a3 *X3 +…. an *Xn= [L, U]   EQ-1 
 
wherePk<= Xk<= Qkfor 1<=k<=n   

An integer interval equation is used to denote the set of 
all ordinary linear equations with constantterms the integers 
between L and U. It has an integer solution iff at least one 
of the equation in the set has an integer solution, subject to 
the constraints. The equation and constraints in  EQ-1 are 
equivalent to 
a1*X1 + a2*X2 + a3*X3 +…. an*Xn= [a0,a0]   EQ-2 
 
where a0 is divisor by gcd(a1, a2 .. an)   

The I-Test is applied starting on EQ-2. This equation is 
(P1,Q1;P2,Q2…. Pk,Qk)-integer solvable iff the interval 
equation 
a1*X1 + a2*X2 + a3*X3 +…+an-1*Xn-1 = [a0–a+

n*Qk+a-

n*Pk,a0– a+
n*Pkk+a-

nQn]     EQ-3 
 
where Pk<= Xk<=Qkfor 1<= k <= n-1 

  a+= a if a>0  otherwise 0 
a- = a if a<0  otherwise 0 

is integer solvable. The above is applied until there are no 
terms on the left side or the GCD test indicates that there 
may be a solution for interval equation. If the integer 
interval on the right-hand side includes zero, then a solution 
exists, otherwise there is no integer solution subject to the 
constraints. 

Also if d= gcd (a1, a2 ..an); then the constraint interval 
equation in EQ-1 is integer solvable iff the constrained 
interval equation: 
a1/d1*X1 + a2/d2*X2 + a3/d3*X3 +…. an/dn*Xn= [L/d,U/d] 
     EQ-4 
wherePk<=Xk<=Qkfor 1<=k<=n   

 
The I-Test inherits all of the benefits of the Banerjee test, 

including efficiency and ability to provide direction vector 
information. Similarly to the Banerjee test I-Test requires 
constant loopbounds and can be applied only to linear 
subscript. 

 
5) The Omega Test: 

Omega Test [37] is an exact dependence and based on a 
combination of least remainder algorithm and Fourier-
Motzkin variable elimination (FMVE) [26] where 
additional extension tests of FMVE can guarantee the 
existence of integer; however has worst case exponential 
time complexity. The input of the Omega test is a set of 
equalities and inequalities resulting from the subscript 
expressions, the iteration index bounds or the if-statement 
conditions; hence derivation of Knuth's [20] least remainder 
algorithm is used to convert these inputs into linear 
inequalities. GCD test and bound normalizations are 
applied to detect if the system is inconsistent during this 
initial conversion. In such cases, the test reports no 
dependence exists, otherwise an extension to standard 
FMVE is used to determine if converted linear equalities 
has integer solution. The variable elimination is performed 
on pairs of inequalities using FMVE techniques. If the 
resulting “real shadow” contains no integers, then the 
original object contains no integer, and the test reports that 
no solution exists. However it’s not necessarily true that the 
real shadow may contain integers, whereas, the original 
object actually contains no integers; hence Omega test 
calculate the subset of the real shadow called “dark 
shadow”. It represents the area under the original object 
where integer solution definitely exists. If it contains 
integers, then the Omega Test reports that dependence exist. 
But the same time if dark shadow is empty and real shadow 
is non-empty, Omega Test begins exhaustive search of the 
solution space, recursively generating and solving integer 
programming problem until integer solutions are either 
found or disproved.  

 
6) The Range Test: 

The Range test [38] came up from need to address the 
issue of non-linear expression. Many of them are due to the 
actual source code and other are while due to complier 
transformations, especially induction variable recognition 
[39].  The traditional dependence analysis techniques 
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cannot expose parallelism for these non-linear expressions 
[40]. 

The Range Test assumes that dependence exists and it 
always tries to disprove dependences. For a given iteration i 
of a loop L, the accessed array subscript range, range(i), is 
considered as symbolic expression; if this range doesn’t 
overlap with the range accessed in next iteration, i+1, then 
there is no dependence for L. The two ranges do not overlap 
if max(range(i) ) <min(range(i+1)).  The Range Test 
disproves carried dependences between A(f(i)) and A(g(j)) 
for a loop L, by proving that the range of elements taken by 
f and g  do not overlap.   

DISCUSSION AND CONCLUSION 

In this review, we have concentrated on loop 
dependence analysis for optimization and 
parallelization.Data dependence analysis is the key to 
optimization and detection of implicit parallelism in 
sequential programs. Loops are most important and 
attractive for parallelization as generally they consume 
more execution time as well as memory. Dependence 
analysis for loop can be done by using a set of distance and 
direction vectors. They describe dependences between loop 
iterations which are necessary to discover the parallelism in 
a program. Hence, we have explained the data dependence 
techniques in details for interested readers. 

The review material demonstrates the data dependence 
analysis techniques and most of the dependence tests which 
can be applied to detect loop dependence. All tests are not 
suitable for all loops. Still there is some scope to improve 
some of dependence tests. Each data dependence test has its 
own limitation and restriction; so different output may arise 
for same problems due to different reasons. The ultimate 
goal of this work is to understand and improve available 
mathematical models of data dependency analysis. 
Designer should consider all cases related to data 
dependence accuracy, efficiency of generated code during 
transformation of existing source code. We have discussed 
such issue and their respective solutions as below: 
1) Loop Variant Variable 

The values of loop variant variables are generally 
changed inside the loop nest which depends on the values 
of the enclosing loop indices. Compiler techniques such 
as induction variable substitution [43], can recognize 
variables which can be expressed as functions of the 
indices of enclosing loops and replace them with 
induction variables with the expressions involving loop 
indices. The transformation should make the relationship 
between variables and loop indices explicit; however such 
transformation may not always  bepossible; but at the 
same time dependence test may be able to resolve 
problems with loop variant accurately. Consider below 
example: 

for (I = 1; I<= N; I++) { 
   for (J = 1; J<= M[I]; J++) { 

S1:   A[I, K + J] = ... 
S2:  . . . = A[I, K + J + 1]; 
    } 
    K=2*K; 

} 

Here value of array M[I] and K will change inside the 
loop nest. The value of changes in each iteration of I; 
however it remains same for each iteration of J. So the level 
of variance for these two variant variables is the level of 
loop I and hence loop variant expression can be 
determining the innermost loop. All occurrences of that 
expression for direction vector is of the form (=, >) for all 
level of variance. This technique can help to check whether 
loop variant variable is equal in dependence problem and 
can be simplified algebraic operations and can be 
incorporated in dependence test. 

 
2) Non-Linear Expressions: 

Most of the test cases discussed in above part 
including Banerjee test, I-test and Omega test focused on 
dependence analysis for linear expressions otherwise non-
linear expression treat as a variant variable. Dependence 
test such as Range test can analyze any type of non-linear 
expression using ranges. Consider below example: 
 

for (I=1; I<=N; I++) { 
S1:   A[I*N+1] = ... 
S2:  . . . = A[I]; 

} 
In above example the first subscript of array A has 

non-linear term I*N and will have always the value 
greater than N+1. Value of second subscripts is always 
less than N and hence it always less than value of first 
subscript; therefore no dependence exists. So dependence 
test can be enhanced by adding this check instead of 
simply ignore non-linear constraints and very often loose 
in accuracy. 
 
3) If-Statement Conditions: 

Generally, If condition is hard to handle while data 
dependence analysis.  I-Test and Banerjee test  deals with 
if-statements by examining the conditional variables. If 
these conditional variables are not updated inside the loop, 
then dependence test can simply ignore them without 
introducing an approximation; even if the two references 
for same array belongs to the if-part and else-part 
respectively since only one of them executes for all loop 
iterations.  The Omega test can handle if statements as it 
handles all linear integer constraints. 

for (I=1; I<=N; I++) { 
if(I<5) 

S1:      A[I] = ... 
} else { 

S2:       ... = A[I]; 
} 

Most of the dependence tests including Banerjee test, I-
Test and the Range test ignoresthe if (I<5) condition and 
reports may be answer. On the other hand, Omega test is 
able to disprove the dependence in this case. 
 
4) Coupled Subscripts: 

Data dependence tests such as Banerjee test, the I-
Test and the Range test rely on subscript by subscript 
testing for multidimensional arrays with coupled 
subscripts. Consider the following example: 
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for (I=1; I<=N; I++) { 
S1:   A[I,I] = ... 
S2:    ... = A[I,I+1]; 

  } 
In the above example, subscripts are coupled and 

subscript-by-subscript testing will indicate possible 
dependence when no dependence exists.  Even though the 
subscripts are coupled, for all (=,*) direction vectors the 
equation do not share the common variables and hence 
dependency does not exist.  I-test is able to prove the 
dependency. Thus, coupling between dependence equations 
should be checked for every direction vector. Coupled 
subscripts do not introduce an approximation in the Omega 
test, since it takes all equation into consideration at once 
. 
5) Complex Loop Bounds: 

Many data dependence tests, including Banerjee test, 
the I-Test assumes that lower bound and upper bound have 
a constant values; however in practical bound could be 
expression of other loop indices or other symbolic variables. 
Consider following example: 

for (I=1; I<=100; I++) { 
 for (J=1; J<=I+1; J++) 
{ 
 
S1:  A[I+J] = ... 
S2:  . . . = 
A[I+J+1]; 
 } 
} 
 

In above example; upper bound of inner loop will 
varyfor each iteration of outer for loop. The upper bound of 
J will have max value as 101 which is equal to the extreme 
value of expression I+1. This approximation is better than 
assuming that the bound is infinity where dependence test 
failed to prove independence in this case. 

Symbolic variables, if it’s not used anywhere in loop, 
then it can be safe to assume its value is either minus or 
plus infinity depending on whether it is a lower or an upper 
bound respectively. Consider the following example: 

 
for (I=1; I<=N; I++) { 

S1:     A[I] = ... 
S2:    ... = A[I+20]; 

} 
The variable N doesn’t used for any other constraints, 

the bound of I can be considered to have an exact state and 
value plus infinity and can be replaced by large constant. If 
the dependence exists for that constant then there exists 
dependence for a value N and vice versa. Since this 
constant is very large, we can safely believe that same result 
will be produced with N.   

 
6) Testing for Integer Solutions: 

Data dependence tests such as Banerjee test and Range 
test cannot prove the dependence in case of integer solution. 
Also I-Test can prove integer solution if it’s a set of 
conditions, called accuracy conditions is satisfied. If the 
accuracy condition of I-Test fails, then ”Omega test 

nightmare” [41] is inevitable [42].  The Omega test always 
tests for integer solutions. 

 
for (I=1; I<=10; I++) { 

S1:   A[I+1] = ... 
S2:    ... = A[11*I-10]; 

} 
In above example, Banerjee test and the Range test 

fail to disprove the existence of an integer. These tests 
will return a false positive “maybe” answer. Both the I-
Test and the Omega test are able to disprove the 
dependence in this case. 
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